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A non-linear theory of internal gravity waves of finite amplitude is developed in 
terms of conservation equations averaged with respect to the phase. The theory 
overcomes the failure of linear ray theory in regions in which waves are trapped 
and establishes the conditions under which finite amplitude waves may propa- 
gate. It gives a geometrical representation of the degeneration of waves into 
quasi-turbulence and predicts the dependence of the energy density on its 
parameters. 

1. Introduction 
The ray theory of small amplitude internal waves in a density stratified liquid 

fails to cope with the singular reflexion which occurs when waves are trapped by 
a gradual inhomogeneity of the stratification. The group velocity of waves of 
zero wavelength degenerates into a vertical vector of zero length, and the theory 
of waves of arbitrary wavelength predicts waves of ever diminishing wave- 
length. It has been observed experimentally that small amplitude internal waves 
are capable of negotiating the trapping region without necessarily acquiring 
large amplitudes or degenerating into quasi-turbulence and are able to preserve 
the sense of the outward direction of propagation. 

The present paper develops a non-linear theory which predicts a propagation 
velocity of various average properties of the wave train which is horizontal and 
non-zero in the vicinity of the (horizontal) plane of trapping. The four average 
properties of the wave train, the amplitude, the wavelength, the direction of the 
wave-number vector and the frequency are related by means of four independent 
differential conservation equations which are hyperbolic for certain ranges of 
the dependent variables. The conditions under which the equations are hyper- 
bolic are represented by points in two disjoint regions in a three-dimensional 
space, separated by a region 9 in which the equations are elliptic. In  the first 
octant, the disjoint regions can be labelled according to whether or not they 
contain the points which represent zero amplitude waves which satisfy the dis- 
persion relation. The evolution of a wave train is represented by a curve in either 
region; a wave of initially zero amplitude will be represented by a curve which 
lies within the disjoint region of the first octant which contains the zero ampli- 
tude dispersion relation curve. If this curve intersects 9 so that the equations 
gradually cease to be hyperbolic, the solution must suffer a discontinuity, analo- 
gous to the shock wave at  the rear of a transonic bubble in compressible gas 
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dynamics. The post-shock representative points must correspond to elliptic 
conditions and hence lie in the interior of L3, and suggests that the quasi-turbu- 
lence into which an unstable internal wave degenerates is non-propagating. 

2. The averaged equations 
The properties of non-linear internal waves in an inviscid density stratified 

liquid are studied by recasting the Euler equations of motion in the form of four 
conservation principles. Three of the relations express the conservation of mass, 
momentum in the horizontal direction and energy; the fourth is a moment of 
the continuity equation. These principles are conveniently derived as the in- 
variants of an integral whose variation yields the Euler equations of fluid 
dynamics; the integral has been given by Seliger & Whitham (1968). An approxi- 
mate solution of the Euler equations, relevant to stationary periodic disturbances 
in a density stratified fluid otherwise at rest is well known; the approximation is 
the Boussinesq approximation in which w& the square of the Vaisala-Brunt 
frequency is retained, whereas wE/g is put identically zero; the approximate 
solution is that disturbances are sinusoidal in the phase. This approximate 
solution which certainly holds locally is substituted into the four conservation 
relations which are then averaged with respect to the phase, so that the short- 
time oscillations are smoothed out, leaving a set of equations governing the 
amplitudes. This set of equations must be hyperbolic for some range of the de- 
pendent variables. In  particular, in the limit of zero amplitude, the propagation 
velocity must exist and coincide with the group velocity. 

The first task is to investigate the propagation in the vicinity of the line of 
trapping. The linear theory predicts that a wave of frequency w propagating into 
a region of slowly varying wo cannot propagate through the layer in which 
wo = w.  In  this layer k,, the vertical component of k the wave-number vector, is 
zero; the group velocity is vertical but of zero magnitude. If waves of finite 
amplitude are to be trapped, and it is confirmed experimentally that they are 
trapped, then energy cannot propagate vertically through some related layer 
whose position may have to be specified indirectly in terms of the local properties 
of the wave train but which must agree with the specification w,, = w in the 
limit of zero amplitude. Since the waves are observed to preserve the sense of 
outward propagation without reflexion back to the source, the propagation 
velocity of the average quantities of finite amplitude waves must tend to a 
horizontal vector of non-zero length. The theory described in the present paper 
predicts such a velocity in the region in which k,, the vertical component of k, 
is zero. It appears that the condition oo = w ,  which is identical to that of k, = 0 
for infinitesimal waves, does not in general correspond to the trapping condition 
for waves of finite amplitude. 

The second task is to investigate the hyperbolicity of the governing equations 
and to relate the findings to the work of Phillips (1967). Similar complementary 
approaches were made to the stability of Stokes surface waves by Whitham 
(1967) and Benjamin (1967). Whitham found that the condition that the govern- 
ing equations should cease to be hyperbolic corresponded exactly to the condition 
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for the explosive growth of resonant interactions investigated by Benjamin. 
In  particular, we must investigate the possibility of the cascading process 
postulated by Phillips, by which mechanism internal waves break down. 

Consider the propagation of waves in two dimensions conjugate to co-ordinates 
x and y; the co-ordinate y increases upwards in the vertical direction. Seliger & 
Whitham (1968) have shown that the Euler equations of motion may be derived 
from a variational principle 

s p d x d t = O ,  

P = Po@) - po(a){q5t+ 4% + &u2 + v2) + SY17 
s 

where 

where po  and po are the equilibrium distributions of pressure and density 
with respect to their arguments, and where v = Vq5 + aVp; equilibrium con- 
ditions of uniform rest correspond to q5 = 0, a = y, /3 = - gt. If we put a = y + a*, 
p = -gt+P* and q5 = Q,-y/3* then 

and 

If the Boussinesq approximation is made, that is the term a& neglected in com- 
parison with ga&, then there is an approximate solution 

a* = A sin 19, 

Q, = -Ak2ki2wsin19, 

p* = - ~ ~ ; ~ - l  case, 
where 8 = k . x - wt, w2 = at k?(k2, + @)-l and a: = - gp;/po. We use Noether's 
theorem to derive the invariants of the variational integral. The theorem states 
that ifp is a function of the n independent variables xi ,  the m dependent variables 
yj and the corresponding derivatives ayj/ax,, if SJp(x, y, Vy) dx = 0 and if J p  dx 
remains invariant under a transformation 

x: = xi + €Yi(X, y, Vy), 
$ = yj +~llrj(x, 39 VY), 

then 

where 

For example, the transformation t* = t + constant leaves J p  dx invariant; if we 
put x1 = x, x2 = y and x3 = t with y1 = q5, y2 = /3 and y3 = a, then Y, = Y2 = 0, 
Y3 = 1 and $i = 0 for all i. Thus 8, = - q5t, O2 = - pt and 8, = -at. Substituting 
these expressions we obtain 

(1) 
a a a 
~{Po(Qt+apt)+Y)+, {Po~(q5t+apt)~+y{Pov(q5t  +am} = 0, 
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which is an expression of the conservation of energy. Similarly, the variational 
integral has an invariant conjugate to translation in the x direction 

which is conservation of momentum in the x direction; it has invariants con- 
jugate to translations in + and p which are respectively 

and 
a a a 
- (ap,) f -  (apou) +- (apov) = 0. 
at ax aY 

(4) 

We now average the equations with respect to the phase 8 so that the short 
time oscillation corresponding to the periodicity of the waves is smoothed out, 
leaving a set of equations which govern the slow modulation of the average 
properties of the waves. We are obliged to average the quantityp,(a) in particular 
with respect to 8; we are at liberty to specify the functional dependence of po on 
its argument, that is the equilibrium distribution of density. In  the interests of 
algebraic simplicity, we choose po(a) = p,,,, - ba, where po is a constant and where 
we confine our attention to a band -d  < a < d ;  we specify that b is to be small 
(in effect the Boussinesq parameter) and that d should be sufficiently small to 
preclude regions of zero and negative density. We shall show that the waves are 
trapped within a layer bounded by the lines on which the local vertical component 
of the wave-number vector is zero. Thus, provided this trapping occurs within 
the band -d  < a < d, the functional dependence of po on its argument outside 
this band is immaterial. In  any event, we would not expect the precise form of 
any stable distribution po(a) to affect the general conclusions. For this particular 
density distribution, the square of the Vtiisala-Brunt frequency 

O J ~  = - g ~ ~ l d ~ o / d ~  = gb(poO-ba)-l  

is a slowly decreasing function of increasing depth. 

we have 
Substituting the Boussinesq solution quoted at the beginning of the section, 

a = yfAs in8  = y+a*, 

po = poo - by  - bA sin 8, 
CD = - Awk2ki2 sin 8, 

/3* = -Aui&cosO, 
and 

v = VCD+a*VP*-P*$ 

= ( -Auk, kc l  cos 8 + A2u; k,o-l sin2 0, Aw cos 8 +A%; k,w-l sin28). 

We also need to know the functional dependence of the equilibrium pressure 
distribution on its argument. Since dp,/dy = - gpo(y) in the undisturbed medium, 
we have that 

where poo is a constant of integration. 
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Averaging (4) with respect to 8, we obtain 

Averaging (3) we obtain 

Equation (2) gives 

The group velocity of infinitesimal amplitude waves is recovered as the propaga- 
tion velocity of (7) in the limit A2 --f 0. The system of equations (5)-( 8) is expected 
to be hyperbolic. If the wave speed in any direction ii is c*ii then recasting the 
equations in terms of interior co-ordinates and a co-ordinate 7 perpendicular to 
the surface and putting a/at = -c*a/ay we obtain a set of equations 

&(aslay) +interior derivatives = 0, 

where X is the column vector (A2 k ,  k ,  w}. The condition det (Q)  = 0 determines 
the wave speeds c*. If we put k = (k l ,  k,).ii, h = (1 ,O)  .ii and v = (0 , l )  .ii then 
the determinantal condition is 

+*+A1 A& A2v - A2 k/w 
k A2h A% - A2k/w 

-c* + A3 -A2(c* + A4)/k1 A5 A2(c*+A,)/o 

-c*A, + A, - A,c* + A10 A11c" +Al2 A13c* +Al4 
where 

k 
A, = (#A2w; - gy) ;, 

A, = $(A~U;  - A2gy) - , h 
w 

= 0, 
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kf + k; 
+l-2A4w:- w3 ’ 

+ gyA2wt $, 3A2w2 4 k + qyA2wE $1. k fi. 
w kl 

If we write D = k2/k, ,  e = A2k:, f = wi /w2  and c = k,c*/w, then this determinantal 
equation has three roots: 

c = $Jyl’D).fi’ 

Clearly, one of the wave speeds is always real and, as can readily be seen from (5) 
and (6), is associated with the continuity equation and its moment. The hyper- 
bolicity of the system will depend on whether the wave speeds associated with 
( 7 )  and (8), the energy and the 2 momentum equations, are real. The equations 
are partially hyperbolic if at  any point on the characteristic surface there is at  
least one direction in which the determinantal equation has real roots. It is 
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convenient to characterize the nature of the equations by the sign of the dis- 
criminant A of the equation. The discriminant is a function of the dependent 
variables D ,  6 andfand of the unit vector fi. At a point in (D,  e,f) space at  which A 
is uniformly negative with respect to fi so that there are no real wave speeds in 
any direction, the equations are elliptic. The surface of the region 9 in (D ,  e,f) 
space in the interior of which A is uniformly negative will be A = 0 and will 
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FIGURE 1. The intersection of the surface of gwwith the plane D = 0. 

represent the boundary in the space of the dependent variables between hyper- 
bolic and elliptic equations. If any point on the surface of 9 is approached by 
a sequence of points lying in A > 0, that is points representing successive states 
of the wave train corresponding to which there are real propagation velocities in 
at least some directions, the point on A = 0 will represent the onset of conditions 
such that the continued outward propagation of average qua.ntities is forbidden. 
Hence, in the vicinity of such points, the wave train must undergo some drastic 
transformation. In  the appendix the nature of the surface of 9 is investigated and 
it is shown that it is almost everywhere continuous, although it may have a 
' crack' which penetrates the whole interior of 9. In  general, however, an arbi- 
trary path cannot penetrate the surface. 

The intersection of 9 with the plane D = 0 is given by 

f = t ( e+  i ) ~ ,  8 = y-e/(e+ iy, 
and is shown in figure 1. The intersection of 9 with the plane 6 = 0 with D < 1 is 

E v ~ L (  l/f- 4) + D[8h2( 1 - l/f) - 20v2 + 4/f] < 0, 
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with an obvious non-uniformity at  D = 0. For D + 0, this is a relation which, 
for given D and f, must be satisfied uniformly with respect to h and v for points 
inside 9; h and v are the cosine and sine respectively of the angle between the 
normal fi to a characteristic surface and the horizontal direction. The equations 
are elliptic provided the equation E = 0 has no real roots and E is negative. 
We can always find a pair (h ,v)  for which E > 0 if the equation 

tan2 $( 4/f - 20) D + tan $( l/f - 4) + 4D( 2 - l/f ) = 0 

has real roots; however, if this equation has no real roots then the condition 
IZ < 0 is always satisfied provided f > a. The relation between f and D which 
corresponds to this latter equation having no real roots is 

A* (1-4f)2-64D(2f-l)(1-5f) < 0. 

Note that A* < 0 impliesf > +.. The curve A* = 0 is shown in figure 2. 

0.35 - 
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4 0 0  

FIGURE 2. The intersection of the surface of 9 w i t h  the plane E = 0. 

The planes D = 0 and E = 0 are locations of discontinuities of 9. For D = 0 + , 
the interior of 9 lies close to the curve in figure 1, but is disjoint from the 
interior o f 9  on D = 0. Fore = 0 + , the projection of the interior of 9 on the plane 
e = 0 is contained in the region shown in figure 2, but in particular the surface of 
9 is not continuous at  c = 0; the reasons for this behaviour are laid forth in the 
appendix. 

If we investigate the determinantal equation for 8 + co we find that the equa- 
tions are nowhere elliptic and that this is so for sufficiently large but finite e. 
Hence the region 9 does not extend beyond some plane E = constant < 00. As 
D --f 00, the equations are hyperbolic provided f/D2 > 1 and this holds uniformly 
in e. Note that if 8 = 0 and the dispersion relation f = 1 +D2 holds, then such 
points lie in a region of (D, e, f )  space in which the equations are always hyper- 
bolic so that the waves are always stable. Further, there is no intersection of the 
surface of 9 with the plane f = co; likewise, there is no intersection with the 
plane f = 0. The surface of 9 is a double surface whose normal section is similar 
to that of figure 2 .  For f = O(l ) ,  the surfaces are piriform, while for large f the 
surfaces are asymptotic to E = 0 for all values of D. The interior of 9 consists 
of the region enclosed by these surfaces together with that portion of the plane 
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D = 0 for which A < 0. The interior of 9 on the plane D = 0 is open as we would 
expect from the properties of infinitesimal waves. For D = 0 + , the dispersion 
relationf = 1 + D2 shows that f = 1 + and we know that for infinitesimal ampli- 
tude waves of frequency less than the Vaisala-Brunt frequency the group velocity 
is non-zero. However, if D = 0 so thatf = 1, the waves can no longer propagate; 
that is, the point in (D, E ,  f) space with co-ordinates (0  + , 0, 1 +) lies strictly 
outside 9 whereas ( O , O ,  1) lies strictly inside 9. Strictly speaking, we have 
classified the point (0, 0 , l )  at which one wave speed becomes zero and the other 
infhite as a non-propagating point on the same footing as ordinary points in 
the interior of 9. In  fact, this point is a point of higher order degeneracy of 9 
than the interior of 9 o n  D = 0 itself. However, it serves to illustrate the open- 
ness of 9 at D = 0. 

Let us now consider the trapping problem, that is the direction and magni- 
tude of the propagation velocities as D -+ 0 from points outside 9. We shall 
find that the propagation velocities are real and horizontal. One wave speed is 
c = @f(l, D )  .ii which tends to c = Pefh as D -+ 0, which is always real and has 
a maximum in the horizontal direction. The other wave speeds from whose 
reality the surface and the interior of 9 was determined are given by the determi- 
nantal equation (9). This equation is of the form 

c2+P(h ,v ,€ ,  D,f)ch+G(h,v,E, D , f ) h 2  = 0 (D  Q 1), 

where as D + 0 the functions F and G become independent of h and v. Now, we 
know that at  a point in the exterior of 9 near D = 0 there is at  least one direction 
in which the roots are real. Thus we may conclude that arbitrarily near D = 0 
but not on D = 0, c = C ( E ,  f) h where C is non-zero in general and real. On 
D = 0, the roots are also proportional to h, but for points which are accessible to 
infinitesimal amplitude waves the function C is not purely real and changes in 
a discontinuous fashion, in general, as D = 0 is attained. The point f = 1, E = 0, 
D = 0 is an exceptional point in that C = 0 there. 

Consider now the wider problem of the stability of the wave train. The first 
octant of (D, E ,  f )  space not occupied by 9 represents states of the wave train 
in which the propagation is at  least partially hyperbolic. So far, we have not 
assumed that any special relation, for example, a dispersion relation, holds 
between the dependent variables. Hence there are many points denoting states 
in which propagation in a hyperbolic manner is possible but which do not satisfy 
the dispersion relation or its generalization. Nevertheless, we expect from the 
work of Whitham that one of the differential relations which hold across charac- 
teristic surfaces will be the generalization to finite amplitudes of the infinitesimal 
amplitude dispersion relation, f = 1 + D2. If a wave is generated initially with 
small amplitude it presumably continues to satisfy everywhere the generaliza- 
tion of the dispersion relation, and is a simple wave. The relation defines a surface 
in (D,  E ,  f) space and the path of a succession of states of the wave train must lie 
on this surface. The wave train propagates unimpeded unless the particular 
path of states on the dispersion relation surface meets the surface of 9. The first 
point to note is that such a path need not approach or intersect the surface of 9. 
Further, an intersection with the interior of 9 on D = 0 corresponds to trapping 
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of the waves and has been discussed. Thus, we may confine our attention to the 
surface of 9 which lies strictly in the first octant of (D, E ,  f ) space, If a path of 
states does intersect the surface of 9, then outward propagation is no longer 
possible. An exactly analogous situation occurs in transonic flow. A supersonic 
bubble embedded in a subsonic flow is in general terminated by a shock wave; 
the Mach number gradually changes as the rear of the bubble approaches and 
a discontinuity occurs to effect the transition to elliptic conditions. The succession 
of states would correspond to the successive values of the Mach number along 
any fixed streamline. It seems unlikely that the general necessity of having a dis- 
continuity separating supersonic from subsonic conditions along a streamline, 
that is hyperbolic from elliptic regions in a succession of states, is a phenomenon 
peculiar to compressible gas flows. Thus, we would expect a discontinuity in 
D, E and f, the representative post-shock point lying in the interior of 9 so that 
the wave would not propagate. If the post-shock frequencies are smaller than those 
immediately prior to the shock wave, then representative points must lie in a 
region of 9 in which fE2 - constant for large f. If the frequency increases across 
the shock wave, as Whitham (1967) suggests may well be necessary for ‘irre- 
versibility’, then the representative points are not quite so closely confined 
since the surfaces of 9 have a finite separation for small f. However, both surfaces 
behave like f fr - & N &E for small E. For both situations Ak, N constant. Now A is 
the magnitude of the maximum displacement of a particle from its equilibrium 
position so that it is itself a measure of the energy in the mode. The corresponding 
scalar energy density function E (k) therefore satisfies the relation 

E(k)  - qkF, 
replacing k: by k2 = k:( 1 + D2). Note that we could have produced a result identi- 
cal to the energy density-wave number relation of Phillips (1967) if we had been 
prepared to identify Aw, as a typical velocity, for in that case 

E ( k )  N A2wt/k N w2kw3. 

The value Aw, is certainly consistent with the expression for v which precedes 
equation (5). The prediction of the energy density spectrum is derived from the 
result 

and puts very little constraint on the form of the surface 9. In other words, the 
dependence of E on k alone is very little test of the theory; the postulation of an 
entirely reasonable characteristic value of velocity can change the k dependence 
of E from k-2 to k-3. However, it also changes the dependence on f. 

If the frequency decreases across the shock, then f e2  N constant. This yields 

E N (w/w,) tgk-z  

6 - F ( f  1 

as a function of k and w/wo. If the frequency increases across the shock then 

E - ((w,/w) - 418 gk-2. 

The result derived by Phillips (1967) is 

E N ~ i k - ~ .  
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Further, the discontinuity links points near the surface of 9 (not points on 9) 
with points in the interior of 9. Postulating that the velocity of the discontinuity 
is zero, the jump conditions depend on the orientation of the discontinuity 
surface; since there seems to be no physical condition which would determine the 
orientation uniquely, there are a variety of jumps co-existing, corresponding to 
different orientations. This multiplicity of post-shock conditions stemming from 
a single pre-shock state presumably corresponds to the cascade of Phillips. 

The author is not aware of any experimental results which confirm or contra- 
dict these results. It is essential for the derivation of the energy density spectrum 
that the post-shock waves should not propagate. It is indeed possible to have 
a shock wave which separates two hyperbolic regions, for example, if the initial 
conditions are concave; however, it seems clear that the analogy with the tran- 
sonic bubble is the appropriate one here. 

Finally, two points are worthy of mention. First, there are, in principle, 
propagating internal waves whose representative points lie in the disjoint region 
of (D, e,f) space which does not contain the infinitesimal amplitude dispersion 
relation curve. Such waves, if they exist, cannot evolve in any continuous 
manner from infinitesimal amplitude waves, but could conceivably be attained 
as post-shock states following a discontinuity arising from concave initial con- 
ditions, where subsequent simple waves overtake preceding waves of the same 
family; a convenient analogy would be the formation of the shock wave in one- 
dimensional unsteady flow of a compressible gas induced by an advancing piston. 
Secondly, a finite amplitude is per se neither necessary nor sufficient for the wave 
train to break down. From figure 1 one might suppose that E may attain values of 
about $ before breakdown need take place. This is based on the assumption that 
the dispersion relation surface (which has not been obtained) is essentially 
independent of e. It is perhaps relevant to point out that in the experiments 
reported by Mowbray & Rarity (1967) values of e, exceptionally as large as 0.7, 
more typically 0.3 were attained without any sign of instability being observed. 

Appendix 
The polynomial equation for the wave speeds c of the non-linear partial 

differential equations has real coefficients which are continuous functions of the 
dependent variables D, e and f and of the direction of the unit vector fi in which 
a wave speed is sought. If this equation has no real root for any direction ii then 
the equations are elliptic. The discriminant of the equation may be considered to 
be a polynomial expression P2, in tan d, where $ is the angle between fi and the 
z axis. Then the equations are elliptic provided this discriminant is uniformly 
of one sign, say negative, for all 4, that is the equation Pz, = 0 has no real roots 
and the coefficient of the highest power is negative. The coefficients of the poly- 
nomial Pz, are likewise continuous real functions of the dependent variables. 
Hence, the partial differential equations change their character from hyperbolic 
to elliptic at  those points (D ,  e, f) in the space 9 at which P2, = 6 < 0, say, where 
6 is arbitrarily small and negative. The locus of such points is the surface of 9 
and the interior of 9 corresponds to P2, < 6. Since the Coefficients of P2, are 
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continuous functions of D,  e and f the surface of 9 is continuous and dense except 
possibly in the neighbourhood of points at  which the higher coefficients of PZn 
vanish. Consider now the form of 9 and its surface in the neighbourhood of a 
singular point s in Y at which the two highest coeficients pzn and p2n-1 of P2, 
simultaneously vanish, The region 9 is determined by the condition %‘ that P2, 

is uniformly negative. Now we can write the polynomial Pzn = C prxr in the 

form (slx2+szx+ 1) C qrxr where the coefficients el, eZ and q? are defined by 
the relations 

2n 

2n- 2 r=O 

r=O 

P2n = ‘lq2n-2, PZn-1 = E1q2n-3+6Zq2n--1? 

pr = ~ ~ q ~ - ~ + ~ ~ q ~ - ~ + q ~ ,  0 6 r < 2n-2.  

2n- 2 

r=O 
Then, if Q2n-2 = 2 qrxr, at any point p in 27 we can represent %‘ as the union of 

two conditions, Vl the condition that elx2 + e2x + 1 should be uniformly positive, 

\ 
g : p = s  

FIUURE 3. A sketch of a region g n e a r  a singular surface. 
(Not to be interpreted as depicting the region 9 o f  the main text.) 

that is has no real roots and el > 0, and Y 2  the condition that QznPz should be 
uniformly less than 8. The condition V, is satisfied in aregion Vip) and V2 in 
a region V!jp). Then the region V@) in which V is satisfied is, to an arbitrarily good 
approximation, V@) = ViP) n 74.). Now, asp  + s, one of the set of points at  which 
pZn and p2n-l are zero, @‘) -+ continuously and since Q2n-2 -+ P2nz-2 smoothly 

2n- 2 - 
as p + s, where P2n-2 = C prxr, the condition V!j@ is also the condition that 

r=O 

PznP2 is uniformly negative, and for any point p near s, %‘ip) is arbitrarily close to 
the corresponding condition for Pzn-2. Hence, VAP)  -+ Vp) continuously. However, 
at p = s, el = e2 = 0 so that the condition Ct) is null, whereas VIP), p + s, is 
non-null. Hence, Vf) is the whole space Y whereas VIP), p $: s, is not the whole 
space. Hence, lim V I P )  n E V f ) .  Thus the surface of Vip) n @), that is the 

surface of 9, need not be continuous at p = s; see the sketch in figure 3 (which 
is not intended to resemble the surface 9 of the main text). We can perform this 

P - w  
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limit process from points on either side of the singular surface p = s with the same 
result. In  general, the projections of the interior of 9 at p = s onto p = s will 
not intersect and the surface of 9 will be discontinuous at p = s. However, the 
singular surface p = s does not provide a means of penetrating the interior of 9, 
that is it is not a crack. 

However, at points at which the highest coefficient pzn or po or both vanish, 
then Pz, = 0 has at  least one real root so that P2, cannot be uniformly negative. 
Such a condition, p2,  = 0 say, defines a surface in 9. The interior of 9 is open at  
its intersection with this surface and the surface does provide a path through the 
interior of 9. However, it remains true that the surface of 9 is almost everywhere 
a barrier to a path of points representing successive states of the system. 

For completeness, it should be mentioned that ‘non-hyperbolic ’ is often taken 
as corresponding to a zero discriminant of the wave speed equation, that is 
‘parabolic’. The surface corresponding to P2, = 0 is arbitrarily close to that for 
P2, = 8 < 0 for arbitrarily small 6 even near singular surfaces p = s. 
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